• लगभग 600 ईसा पूर्व (BC) में, यूनान के दार्शनिक थेल्स (Thales) ने देखा कि जब अम्बर (Amber) को बिल्ली की खाल से रगड़ा जाता है; तो उसमें कागज के छोटे-छोटे टुकड़े आदि को आकर्षित करने का गुण आ जाता है । 
  • Charges : 
  • आवेशों के लिए ऋणात्मक एवं धनात्मक पदों का प्रयोग सर्वप्रथम बेंजामिन फ्रेंकलिन (Benjamin Franklin) ने किया था । 
    • Negative charge 
    • Positive charge
    • like charges – Repel
    • Unlike charges- Attraction

 




Electrostatics Quick Revision Notes


Electrostatics Quick Revision Notes

Exam Focus: These notes cover key concepts frequently tested in SSC CGL, UPSC, and other competitive exams.

1. Electric Charge

  • Charge is quantized: \( q = ne \), where \( n = \pm 1, \pm 2, \pm 3, \ldots \) and \( e = 1.6 \times 10^{-19} \, \text{C} \)
  • Like charges repel, unlike charges attract
  • Conservation of charge: Total charge in an isolated system remains constant

2. Coulomb’s Law

The force between two point charges:
\[ F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \]
where \( \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \, \text{N m}^2/\text{C}^2 \)
  • Force is conservative, central, and obeys Newton’s third law
  • In vector form: \( \vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r} \)

3. Electric Field

Electric field due to a point charge:
\[ \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r} \]
  • Field lines start from positive charges and end at negative charges
  • Number of field lines is proportional to the magnitude of charge
  • Field lines never intersect

4. Electric Flux

\[ \Phi = \int \vec{E} \cdot d\vec{A} \]
For uniform field and flat surface: \( \Phi = E A \cos\theta \)

5. Gauss’s Law

\[ \oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\epsilon_0} \]
  • Applicable to closed surfaces (Gaussian surfaces)
  • Useful for calculating E for symmetric charge distributions

6. Applications of Gauss’s Law

Infinite straight wire: \( E = \frac{\lambda}{2\pi\epsilon_0 r} \)
Infinite plane sheet: \( E = \frac{\sigma}{2\epsilon_0} \)
Spherical shell:
– Inside: \( E = 0 \)
– Outside: \( E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \)
Solid sphere:
– Inside: \( E = \frac{1}{4\pi\epsilon_0} \frac{qr}{R^3} \)
– Outside: \( E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \)

7. Electric Potential

Potential difference: \( V_B – V_A = -\int_A^B \vec{E} \cdot d\vec{l} \)
Potential due to point charge: \( V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} \)
  • Potential is scalar, while field is vector
  • Equipotential surfaces are perpendicular to field lines

8. Capacitance

\[ C = \frac{Q}{V} \]
Parallel plate capacitor: \( C = \frac{\epsilon_0 A}{d} \)
Spherical capacitor: \( C = 4\pi\epsilon_0 \frac{ab}{b-a} \)
Isolated sphere: \( C = 4\pi\epsilon_0 R \)

9. Capacitors in Circuits

Series: \( \frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots \)
Parallel: \( C_{\text{eq}} = C_1 + C_2 + C_3 + \cdots \)

10. Energy in Capacitors

\[ U = \frac{1}{2} CV^2 = \frac{1}{2} QV = \frac{Q^2}{2C} \]
Energy density: \( u = \frac{1}{2} \epsilon_0 E^2 \)

11. Dielectrics

  • Dielectric constant: \( K = \frac{C}{C_0} \)
  • Polarization reduces effective field: \( E = \frac{E_0}{K} \)
  • Capacitance with dielectric: \( C = KC_0 \)

Important Formulas Summary

Concept Formula
Coulomb’s Law \( F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \)
Electric Field (Point Charge) \( E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \)
Electric Flux \( \Phi = EA\cos\theta \)
Gauss’s Law \( \oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\epsilon_0} \)
Electric Potential (Point Charge) \( V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} \)
Potential Difference \( V_B – V_A = -\int_A^B \vec{E} \cdot d\vec{l} \)
Capacitance \( C = \frac{Q}{V} \)
Parallel Plate Capacitor \( C = \frac{\epsilon_0 A}{d} \)
Energy in Capacitor \( U = \frac{1}{2} CV^2 = \frac{1}{2} QV = \frac{Q^2}{2C} \)

Important Constants

Constant Value
Charge of electron (e) \( -1.6 \times 10^{-19} \, \text{C} \)
Permittivity of free space (ε₀) \( 8.85 \times 10^{-12} \, \text{C}^2/\text{N m}^2 \)
\( \frac{1}{4\pi\epsilon_0} \) \( 9 \times 10^9 \, \text{N m}^2/\text{C}^2 \)


  • Electric field 
  • Electric lines of force
  • Conductor
  • Non-conductor
  • Semi-conductor
  • Surface density of charge
  • Laws of Electric Force or Coulomb’s Law
  • Permitivity
  • Electric Field
  • Electric Force
  • Intensity of Electric Field
  • Electric Potential
  • Electric Field Lines
  • Electric Flux
  • Electric Dipole
  • Capacitor
  • Dielectric
  • Electric Current
  • Electric Current Density
  • Ohm’s Law
  • Conductivity
  • Superconductor
  • Conductance
  • Electric Cell
    • Primary
    • Secondary
  • EMF Vs Potential Difference
  • Kirchoff’s Law
  • Electric Power
  • Joules Law Of Heating
  • Wheatstone Bridge
  • Meter Bridge
  • Potentiometer
  • Cyclotron
  • Galvanometer
  • Voltmeter
  • Ammeter
  • Fuse
  • MCB
Electrostatics